Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
1.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744809

ABSTRACT

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Subject(s)
Glioblastoma , Hypoxia-Inducible Factor 1, alpha Subunit , Methyltransferases , Neoplastic Stem Cells , Proto-Oncogene Proteins c-akt , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Proto-Oncogene Proteins c-akt/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , Mice , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Signal Transduction , RNA, Transfer/metabolism , RNA, Transfer/genetics , Mitochondria/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Cell Proliferation
2.
Elife ; 122024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573813

ABSTRACT

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Subject(s)
Glycolysis , Phosphofructokinase-2 , Animals , Mice , Adenosine Triphosphate/metabolism , Anaerobiosis , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Oxidative Phosphorylation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Phosphoric Monoester Hydrolases/metabolism
3.
Exp Hematol ; 134: 104229, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38679063
4.
Int J Hematol ; 119(5): 473-475, 2024 May.
Article in English | MEDLINE | ID: mdl-38558107
5.
Blood Adv ; 8(7): 1651-1666, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38315834

ABSTRACT

ABSTRACT: Stress erythropoiesis can be influenced by multiple mediators through both intrinsic and extrinsic mechanisms in early erythroid precursors. Single-cell RNA sequencing was conducted on spleen tissue isolated from mice subjected to phenylhydrazine and serial bleeding to explore novel molecular mechanisms of stress erythropoiesis. Our results showed prominent emergence of early erythroblast populations under both modes of anemic stress. Analysis of gene expression revealed distinct phases during the development of emerging erythroid cells. Interestingly, we observed the presence of a "hiatus" subpopulation characterized by relatively low level of transcriptional activities that transitions between early stages of emerging erythroid cells, with moderate protein synthesis activities. Moreover, single-cell analysis conducted on macrophage populations revealed distinct transcriptional programs in Vcam1+ macrophages under stress. Notably, a novel marker, CD81, was identified for labeling central macrophages in erythroblastic islands (EBIs), which is functionally required for EBIs to combat anemic stress. These findings offer fresh insights into the intrinsic and extrinsic pathways of early erythroblasts' response to stress, potentially informing the development of innovative therapeutic approaches for addressing anemic-related conditions.


Subject(s)
Anemia , Spleen , Mice , Animals , Spleen/metabolism , Erythroblasts/metabolism , Anemia/etiology , Anemia/metabolism , Erythropoiesis/physiology , Macrophages/metabolism
6.
EMBO J ; 43(3): 339-361, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238476

ABSTRACT

Hematopoietic stem cell (HSC) divisional fate and function are determined by cellular metabolism, yet the contribution of specific cellular organelles and metabolic pathways to blood maintenance and stress-induced responses in the bone marrow remains poorly understood. The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 (encoded by the Mitol gene) is known to regulate mitochondrial and endoplasmic reticulum (ER) interaction and to promote cell survival. Here, we investigated the functional involvement of MITOL in HSC maintenance by generating MX1-cre inducible Mitol knockout mice. MITOL deletion in the bone marrow resulted in HSC exhaustion and impairment of bone marrow reconstitution capability in vivo. Interestingly, MITOL loss did not induce major mitochondrial dysfunction in hematopoietic stem and progenitor cells. In contrast, MITOL deletion induced prolonged ER stress in HSCs, which triggered cellular apoptosis regulated by IRE1α. In line, dampening of ER stress signaling by IRE1α inihibitor KIRA6 partially rescued apoptosis of long-term-reconstituting HSC. In summary, our observations indicate that MITOL is a principal regulator of hematopoietic homeostasis and protects blood stem cells from cell death through its function in ER stress signaling.


Subject(s)
Endoribonucleases , Protein Serine-Threonine Kinases , Mice , Animals , Protein Serine-Threonine Kinases/genetics , Apoptosis , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Hematopoietic Stem Cells/metabolism
7.
Trends Cell Biol ; 34(2): 161-172, 2024 02.
Article in English | MEDLINE | ID: mdl-37481335

ABSTRACT

Hematopoietic stem cells (HSCs) give rise to nearly all blood cell types and play a central role in blood cell production in adulthood. For many years it was assumed that these roles were similarly responsible for driving the formation of the hematopoietic system during the embryonic period. However, detailed analysis of embryonic hematopoiesis has revealed the presence of hematopoietic cells that develop independently of HSCs both before and after HSC generation. Furthermore, it is becoming increasingly clear that HSCs are less involved in the production of functioning blood cells during the embryonic period when there is a much higher contribution from HSC-independent hematopoietic processes. We outline the current understanding and arguments for HSC-dependent and -independent hematopoiesis, mainly focusing on mouse ontogeny.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Mice , Animals , Hematopoietic Stem Cells/metabolism , Embryonic Development , Cell Lineage , Cell Differentiation
8.
Cancer Sci ; 115(1): 197-210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882467

ABSTRACT

Genetic mutations in the isocitrate dehydrogenase (IDH) gene that result in a pathological enzymatic activity to produce oncometabolite have been detected in acute myeloid leukemia (AML) patients. While specific inhibitors that target mutant IDH enzymes and normalize intracellular oncometabolite level have been developed, refractoriness and resistance has been reported. Since acquisition of pathological enzymatic activity is accompanied by the abrogation of the crucial WT IDH enzymatic activity in IDH mutant cells, aberrant metabolism in IDH mutant cells can potentially persist even after the normalization of intracellular oncometabolite level. Comparisons of isogenic AML cell lines with and without IDH2 gene mutations revealed two mutually exclusive signalings for growth advantage of IDH2 mutant cells, STAT phosphorylation associated with intracellular oncometabolite level and phospholipid metabolic adaptation. The latter came to light after the oncometabolite normalization and increased the resistance of IDH2 mutant cells to arachidonic acid-mediated apoptosis. The release of this metabolic adaptation by FDA-approved anti-inflammatory drugs targeting the metabolism of arachidonic acid could sensitize IDH2 mutant cells to apoptosis, resulting in their eradication in vitro and in vivo. Our findings will contribute to the development of alternative therapeutic options for IDH2 mutant AML patients who do not tolerate currently available therapies.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Arachidonic Acid/therapeutic use , Mutation , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Isocitrate Dehydrogenase/metabolism
9.
Exp Hematol ; 129: 104124, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898316

ABSTRACT

Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.


Subject(s)
Histones , Hydroxymethylglutaryl-CoA Synthase , Mice , Animals , Histones/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Ketone Bodies/genetics , Ketone Bodies/metabolism , Liver/metabolism , Fasting/physiology , Fatty Acids/metabolism
10.
Blood ; 142(19): 1622-1632, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37562000

ABSTRACT

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.


Subject(s)
Endothelial Cells , Stem Cell Factor , Mice , Animals , Stem Cell Factor/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Bone and Bones , Stem Cell Niche , Bone Marrow Cells/metabolism
11.
Proc Natl Acad Sci U S A ; 120(32): e2206860120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523546

ABSTRACT

Mbtd1 (mbt domain containing 1) encodes a nuclear protein containing a zinc finger domain and four malignant brain tumor (MBT) repeats. We previously generated Mbtd1-deficient mice and found that MBTD1 is highly expressed in fetal hematopoietic stem cells (HSCs) and sustains the number and function of fetal HSCs. However, since Mbtd1-deficient mice die soon after birth possibly due to skeletal abnormalities, its role in adult hematopoiesis remains unclear. To address this issue, we generated Mbtd1 conditional knockout mice and analyzed adult hematopoietic tissues deficient in Mbtd1. We observed that the numbers of HSCs and progenitors increased and Mbtd1-deficient HSCs exhibited hyperactive cell cycle, resulting in a defective response to exogenous stresses. Mechanistically, we found that MBTD1 directly binds to the promoter region of FoxO3a, encoding a forkhead protein essential for HSC quiescence, and interacts with components of TIP60 chromatin remodeling complex and other proteins involved in HSC and other stem cell functions. Restoration of FOXO3a activity in Mbtd1-deficient HSCs in vivo rescued cell cycle and pool size abnormalities. These findings indicate that MBTD1 is a critical regulator for HSC pool size and function, mainly through the maintenance of cell cycle quiescence by FOXO3a.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Animals , Mice , Cell Cycle/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/metabolism
12.
EBioMedicine ; 92: 104596, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37182269

ABSTRACT

BACKGROUND: Birt-Hogg-Dubé (BHD) syndrome, caused by germline alteration of folliculin (FLCN) gene, develops hybrid oncocytic/chromophobe tumour (HOCT) and chromophobe renal cell carcinoma (ChRCC), whereas sporadic ChRCC does not harbor FLCN alteration. To date, molecular characteristics of these similar histological types of tumours have been incompletely elucidated. METHODS: To elucidate renal tumourigenesis of BHD-associated renal tumours and sporadic renal tumours, we conducted whole genome sequencing (WGS) and RNA-sequencing (RNA-seq) of sixteen BHD-associated renal tumours from nine unrelated BHD patients, twenty-one sporadic ChRCCs and seven sporadic oncocytomas. We then compared somatic mutation profiles with FLCN variants and RNA expression profiles between BHD-associated renal tumours and sporadic renal tumours. FINDINGS: RNA-seq analysis revealed that BHD-associated renal tumours and sporadic renal tumours have totally different expression profiles. Sporadic ChRCCs were clustered into two distinct clusters characterized by L1CAM and FOXI1 expressions, molecular markers for renal tubule subclasses. Increased mitochondrial DNA (mtDNA) copy number with fewer variants was observed in BHD-associated renal tumours compared to sporadic ChRCCs. Cell-of-origin analysis using WGS data demonstrated that BHD-associated renal tumours and sporadic ChRCCs may arise from different cells of origin and second hit FLCN alterations may occur in early third decade of life in BHD patients. INTERPRETATION: These data further our understanding of renal tumourigenesis of these two different types of renal tumours with similar histology. FUNDING: This study was supported by JSPS KAKENHI Grants, RIKEN internal grant, and the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), Center for Cancer Research.


Subject(s)
Birt-Hogg-Dube Syndrome , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/complications , Carcinogenesis , RNA , Forkhead Transcription Factors
15.
Front Cell Dev Biol ; 10: 994588, 2022.
Article in English | MEDLINE | ID: mdl-36478736

ABSTRACT

Tsukushi (TSK) proteoglycan dysfunction leads to hydrocephalus, a condition defined by excessive fluid collection in the ventricles and lateral ventricular enlargement. TSK injections into the LV at birth are effective at rescuing the lateral ventricle (LV). TSK regulates the activation of the Wnt signaling to facilitate the proper expansion of the LV and maintain the fate of the neural stem cell lineage. However, the molecular mechanism by which TSK acts on neural stem/progenitor cells (NSCs) during LV development is unknown. We demonstrated that TSK is crucial for the splicing and development-associated gene regulation of GFAP-expressing subventricular zone (SVZ) NSCs. We isolated GFAP-expressing NSCs from the SVZ of wild-type (GFAPGFP/+/TSK+/+) and TSK knock-out (GFAPGFP/+/TSK-/-) mice on postnatal day 3 and compared their transcriptome and splicing profiles. TSK deficiency in NSCs resulted in genome-wide missplicing (alteration in exon usage) and transcriptional dysregulation affecting the post-transcriptional regulatory processes (including splicing, cell cycle, and circadian rhythm) and developmental signaling networks specific to the cell (including Wnt, Sonic Hedgehog, and mTOR signaling). Furthermore, TSK deficiency prominently affected the splicing of genes encoding RNA and DNA binding proteins in the nervous SVZ and non-nervous muscle tissues. These results suggested that TSK is involved in the maintenance of correct splicing and gene regulation in GFAP-expressing NSCs, thereby protecting cell fate and LV development. Hence, our study provides a critical insight on hydrocephalus development.

16.
Nat Commun ; 13(1): 7064, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400777

ABSTRACT

The transcription factor MYB is a crucial regulator of hematopoietic stem and progenitor cells. However, the nature of lineage-specific enhancer usage of the Myb gene is largely unknown. We identify the Myb -68 enhancer, a regulatory element which marks basophils and mast cells. Using the Myb -68 enhancer activity, we show a population of granulocyte-macrophage progenitors with higher potential to differentiate into basophils and mast cells. Single cell RNA-seq demonstrates the differentiation trajectory is continuous from progenitors to mature basophils in vivo, characterizes bone marrow cells with a gene signature of mast cells, and identifies LILRB4 as a surface marker of basophil maturation. Together, our study leads to a better understanding of how MYB expression is regulated in a lineage-associated manner, and also shows how a combination of lineage-related reporter mice and single-cell transcriptomics can overcome the rarity of target cells and enhance our understanding of gene expression programs that control cell differentiation in vivo.


Subject(s)
Basophils , Hematopoiesis , Mice , Animals , Leukocyte Count , Cell Differentiation/genetics , Stem Cells/metabolism
17.
Nature ; 609(7928): 779-784, 2022 09.
Article in English | MEDLINE | ID: mdl-36104564

ABSTRACT

Self-renewal and differentiation are tightly controlled to maintain haematopoietic stem cell (HSC) homeostasis in the adult bone marrow1,2. During fetal development, expansion of HSCs (self-renewal) and production of differentiated haematopoietic cells (differentiation) are both required to sustain the haematopoietic system for body growth3,4. However, it remains unclear how these two seemingly opposing tasks are accomplished within the short embryonic period. Here we used in vivo genetic tracing in mice to analyse the formation of HSCs and progenitors from intra-arterial haematopoietic clusters, which contain HSC precursors and express the transcription factor hepatic leukaemia factor (HLF). Through kinetic study, we observed the simultaneous formation of HSCs and defined progenitors-previously regarded as descendants of HSCs5-from the HLF+ precursor population, followed by prompt formation of the hierarchical haematopoietic population structure in the fetal liver in an HSC-independent manner. The transcription factor EVI1 is heterogeneously expressed within the precursor population, with EVI1hi cells being predominantly localized to intra-embryonic arteries and preferentially giving rise to HSCs. By genetically manipulating EVI1 expression, we were able to alter HSC and progenitor output from precursors in vivo. Using fate tracking, we also demonstrated that fetal HSCs are slowly used to produce short-term HSCs at late gestation. These data suggest that fetal HSCs minimally contribute to the generation of progenitors and functional blood cells before birth. Stem cell-independent pathways during development thus offer a rational strategy for the rapid and simultaneous growth of tissues and stem cell pools.


Subject(s)
Cell Lineage , Fetus , Hematopoietic Stem Cells , Liver , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow , Cell Differentiation , Cell Self Renewal , Cell Tracking , Female , Fetus/cytology , Hematopoietic Stem Cells/cytology , Liver/cytology , MDS1 and EVI1 Complex Locus Protein/metabolism , Mice , Pregnancy , Transcription Factors/metabolism
18.
J Exp Med ; 219(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36112140

ABSTRACT

Intercellular mitochondria transfer is a biological phenomenon implicated in diverse biological processes. However, the physiological role of this phenomenon remains understudied between erythroblasts and their erythroblastic island (EBI) macrophage niche. To gain further insights into the mitochondria transfer functions, we infused EBI macrophages in vivo into mice subjected to different modes of anemic stresses. Interestingly, we observed the occurrence of mitochondria transfer events from the infused EBI macrophages to early stages of erythroblasts coupled with enhanced erythroid recovery. Single-cell RNA-sequencing analysis on erythroblasts receiving exogenous mitochondria revealed a subset of highly proliferative and metabolically active erythroid populations marked by high expression of CD47. Furthermore, CD47 or Sirpα blockade leads to a decline in both the occurrence of mitochondria transfer events and their mediated erythroid recovery. Hence, these data indicate a significant role of mitochondria transfer in the enhancement of erythroid recovery from stress through the alteration of the bioenergetic profiles via CD47-Sirpα interaction in the early stages of erythroblasts.


Subject(s)
CD47 Antigen , Erythropoiesis , Mitochondria , Animals , CD47 Antigen/metabolism , Energy Metabolism , Erythroblasts/metabolism , Erythropoiesis/physiology , Mice , Mitochondria/metabolism , RNA/metabolism , Receptors, Erythropoietin/metabolism , Single-Cell Analysis , Stress, Physiological
19.
Commun Biol ; 5(1): 776, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918480

ABSTRACT

Hematopoietic stem cells (HSCs) are produced from the blood vessel walls and circulate in the blood during the perinatal period. However, the migration dynamics of how HSCs enter the bone marrow remain elusive. To observe the dynamics of HSCs over time, the present study develops an intravital imaging method to visualize bone marrow in neonatal long bones formed by endochondral ossification which is essential for HSC niche formation. Endogenous HSCs are labeled with tdTomato under the control of an HSC marker gene Hlf, and a customized imaging system with a bone penetrating laser is developed for intravital imaging of tdTomato-labeled neonatal HSCs in undrilled tibia, which is essential to avoid bleeding from fragile neonatal tibia by bone drilling. The migration speed of neonatal HSCs is higher than that of adult HSCs. Neonatal HSCs migrate from outside to inside the tibia via the blood vessels that penetrate the bone, which is a transient structure during the neonatal period, and settle on the blood vessel wall in the bone marrow. The results obtained from direct observations in vivo reveal the motile dynamics and colonization process of neonatal HSCs during bone marrow formation.


Subject(s)
Bone Marrow , Stem Cell Niche , Bone and Bones , Diagnostic Imaging , Hematopoietic Stem Cells , Humans , Infant, Newborn
20.
Biol Open ; 11(9)2022 09 15.
Article in English | MEDLINE | ID: mdl-36017733

ABSTRACT

Recent genetic lineage tracing studies reveal heterogeneous origins of vascular endothelial cells and pericytes in the developing brain vasculature, despite classical experimental evidence for a mesodermal origin. Here we provide evidence through a genetic lineage tracing experiment that cephalic paraxial mesodermal cells give rise to endothelial cells and pericytes in the developing mouse brain. We show that Hepatic leukemia factor (Hlf) is transiently expressed by cephalic paraxial mesenchyme at embryonic day (E) 8.0-9.0 and the genetically marked E8.0 Hlf-expressing cells mainly contribute to the developing brain vasculature. Interestingly, the genetically marked E10.5 Hlf-expressing cells, which have been previously reported to contain embryonic hematopoietic stem cells, fail to contribute to the vascular cells. Combined, our genetic lineage tracing data demonstrate that a transient expression of Hlf marks a cephalic paraxial mesenchyme contributing to the developing brain vasculature. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Endothelial Cells , Leukemia , Animals , Brain , Humans , Leukemia/metabolism , Mesoderm , Mice , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...